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1. INTRODUCTION

The traditional scheme describing the formation of
the magnetic field of a bipolar sunspot group (often
silently assumed to be virtually unquestionable) is
based on the idea that a magnetic flux tube lies at some
depth below the solar photosphere. The strength of the
magnetic field in the tube locally reaches a value sufficient
for the tube to emerge under the action of magnetic buoy-
ancy. The segment of the tube that has emerged intersects
the photosphere at two sites, and two spots of opposite
magnetic polarities arise precisely at these sites [1]. This
view can also account for some global regularities in solar
activity, e.g., the Hale law.

However, the rising-tube model can hardly offer an
adequate representation of reality. First, if it is adopted,
one has to account for the origin of the strong magnetic
field in the tube; to this end, some additional, fairly arti-
ficial assumptions need to be introduced. Second, and
especially important, is that the evolution pattern
inferred from this model for a local photospheric mag-
netic field disagrees sharply with the corresponding
pattern actually observed on the Sun. Let us list the
main points of this disagreement.

(1) The strong magnetic field present in the tube
would affect the convective flow even before the emer-
gence of the tube on the surface, and subsequently the ris-
ing tube would completely break down the existing super-
granular velocity field. In contrast, the actually observed
flow patterns normally remain almost invariable in the
process of local magnetic-field amplification [2].

(2) Certain dramatic effects, such as plasma streams
spreading from the site above the rising tube, should be
especially impressive but have never been observed.

(3) The emerging magnetic field itself, strong and
mainly horizontal, would be directly observed in the
photosphere as one of the most prominent features of
the process. Nothing of the sort actually takes place.

(4) The emergence of a tube implies a sharp discrep-
ancy in direction between the streamlines and magnetic
field lines. In reality, as a spot develops, the magnetic
field gradually 

 

seeps

 

 through the photosphere without
disrupting the existing velocity field [2].

(5) According to the observations of Bumba [2], the
area distribution of sunspots exhibits pronounced peaks
near multiples of the area of a supergranule. Such spot-
area quantization cannot be accounted for in the rising-
tube model.

At the same time, an alternative possibility was sug-
gested 35 years ago by Tverskoy [3]. He associated the
process of local magnetic-field amplification with the
actually observed convective motions of the solar mat-
ter in supergranules. The solar plasma circulating in a
supergranular cell can amplify the magnetic field to
high strengths and form a bipolar magnetic configura-
tion typical of a sunspot group. Tverskoy’s hypothesis
naturally and easily overcomes the serious difficulties
encountered by the rising-tube model. At the same
time, the mechanism suggested by Tverskoy fits into
the overall picture of solar activity at least as well as the
tube mechanism does.

Tverskoy considered a simple kinematic model,
assuming the fluid motion to be predefined and inde-
pendent of the magnetic field. The velocity field in the
supergranular convection cell was approximated by a
toroidal eddy, and the electrical conductivity of the
fluid was assumed to be infinite. A weak horizontal
magnetic field was specified at the initial time. The
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“winding” of magnetic field lines by the eddy produced
two bunches of lines of amplified field, opposite in
polarity and situated in diametrically opposed parts of
the vortex ring—a bipolar magnetic configuration. This
approach made it possible to arrive at a number of gen-
eralizations [4, 5]. In addition, it demonstrated the pos-
sibility of the action of a global solar hydromagnetic
dynamo based on the idea of an ensemble of toroidal
eddies (cells) with an azimuthal (Coriolis) velocity
component, distributed over the entire convective enve-
lope of the Sun [6].

If we suppose that precisely this convective mecha-
nism is responsible for the formation of the bipolar
magnetic configurations observed on the Sun, any arti-
ficial assumptions concerning the advance formation of
flux tubes of strong magnetic fields become unneces-
sary, and the predicted picture comes into agreement
with observations. The magnetic field lines will be
stretched along streamlines, and the magnetic flux will
gradually percolate through the solar surface.

However, the kinematic model leaves many ques-
tions unresolved. Among them is the most important
issue of the efficiency of the mechanism under study:
Can a real convection cell provide sufficient magnetic-
field amplification before the flow in this cell is slowed
down or the cell is disrupted by instabilities?

The convective amplification of a magnetic field is a
strongly nonlinear and fundamentally three-dimen-
sional mechanism. A thorough analysis and deep sub-
stantiation of the convective mechanism for the forma-
tion of photospheric magnetic fields thus require
numerical simulations of the evolution of three-dimen-
sional flows and magnetic fields based on a full system
of magnetohydrodynamic equations. High spatial reso-
lution is necessary for the computational scheme; such
calculations have become possible only in recent years.

Some results obtained in this way will be presented
here. At this early stage of investigation, we will restrict
ourselves to the Boussinesq approximation (see, e.g., [7]).
In other words, we will assume density variations to be
negligibly small in all terms of the equations except for
the term proportional to the gravitational acceleration.

Let us note that, although numerical simulations of
three-dimensional magnetoconvection have been car-
ried out for a relatively long time by various groups
around the world, the mechanism of magnetic-field
amplification and structuring has not been comprehen-
sively studied. Most frequently, studies have been con-
cerned with the effect (discovered by Weiss [8]) of spa-
tial separation of the flow and the magnetic flux, which
arises as the convection interacts with an initially
imposed—as a rule, vertical—magnetic field ([9] is
noteworthy among the most recent investigations in
this cycle); some studies have focused attention on the
oscillation and wave processes inherent in compress-
ible magnetoconvection (as, e.g., in [10]).

2. FORMULATION OF THE PROBLEM
OF NONLINEAR NUMERICAL SIMULATION

We will solve the system of magnetohydrodynamic
equations in the Boussinesq approximation for a plane
horizontal layer 0 < 

 

z

 

 < 

 

d

 

 of a fluid with finite electrical
conductivity heated from below. Imagine that the layer
under study is bounded from below and above by slabs
of a motionless material, perfectly electrically and ther-
mally conductive, and that the lower and upper bound-
ary are kept at constant temperatures 

 

T

 

1

 

 and 

 

T

 

2

 

, respec-
tively, their difference being 

 

∆

 

T

 

. We represent any vari-
able 

 

f

 

 of the problem as the sum of its 

 

unperturbed

 

value 

 

f

 

0

 

, which corresponds to the motionless state of
the fluid, and a 

 

perturbation

 

, which is produced by the
flow (and, in general, can even substantially exceed the
unperturbed value). We take the unperturbed (initial)
magnetic field 

 

H

 

0

 

 to be uniform and directed horizon-
tally, along the 

 

x

 

 axis. We denote the magnetic-field
perturbation, measured in units of 

 

H

 

0

 

, as 

 

h

 

. The pertur-
bation of the temperature—i.e., its departure from the
equilibrium, linear profile 

 

T

 

0

 

 = 

 

T

 

1

 

 – 

 

∆

 

T

 

(

 

z

 

/

 

d

 

)

 

, expressed
in units of 

 

∆

 

T

 

—will be designated as 

 

θ

 

. We choose 

 

d

 

 as
the unit length and the characteristic time 

 

t

 

ν

 

 = 

 

d

 

2

 

/

 

ν

 

 for
viscous dissipation on the scale 

 

d

 

 as the unit time (here,

 

ν

 

 is the kinematic viscosity). We denote the dimension-
less velocity as 

 

u

 

.
Let us write the original system of equations in the

following dimensionless form:

 

(1)

(2)

(3)

(4)

(5)

 

Here, 

 

 = 

 

H

 

0

 

/

 

H

 

0

 

,

 

 and  is a unit vector directed along
the 

 

z

 

 coordinate axis, vertically upward. The quantity 

 

ϖ

 

is the dimensionless form of the combination 

 

p

 

'/

 

ρ

 

0

 

(where 

 

p

 

'

 

 is the pressure perturbation and 

 

ρ

 

0

 

 is the den-
sity at temperature 

 

T

 

0

 

). The dimensionless parameters

 

(6)

 

(where 

 

α

 

 is the volumetric thermal-expansion coeffi-
cient of the fluid, 

 

χ

 

 its thermal diffusivity, 

 

σ

 

 its electri-
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cal conductivity, and νm its magnetic viscosity) are the
Rayleigh number, Chandrasekhar number, normal
Prandtl number, and magnetic Prandtl number, respec-
tively.

We assume the surfaces of the layer to be free-slip
and impermeable; i.e., we specify the condition that the
normal (vertical) velocity component and tangential
stresses vanish at these surfaces:

(7)

If the slabs bounding the layer are perfectly electrically
conducting, the boundary conditions for the magnetic
field have a quite similar form:

(8)

In this formulation of the problem, the temperature per-
turbations vanish at the layer boundaries:

(9)

We employ the Galerkin method in the form
described by Orszag [11]. We assume the velocity field,
magnetic field, and thermal-perturbation field to be
periodic functions of the coordinates x and y. We intro-
duce spectral representations of these functions in the
form of partial sums of trigonometric Fourier series; the
boundary conditions (7)–(9) also make it possible to
choose trigonometric functions to describe the z depen-
dences. The full wavevector of a harmonic with num-
bers l, m, n will be klmn = {lα, mβ, nπ}, with l < Kx ,
m < Ky, n < Kz; here, α and β are the wavenumbers
specifying the fundamental periods in x and y, respec-
tively, and Kx, Ky, Kz are the spectrum bounds chosen
for the computations. To reduce the number of vari-
ables, we restrict our consideration to physical fields
with a certain symmetry with respect to the coordinate
origin (see Figs. 1, 2, 4 below); in this case, the spectral
coefficients (harmonic amplitudes) will obey certain
parity relations in l and m.

Substitution of the spectral representations into the
original system (1)–(5) reduces it to a system of ordi-
nary differential equations for the harmonic amplitudes
as functions of time. Following Orszag [11], we use a
fast Fourier transformation to calculate the convolution
sums in the right-hand sides of the spectral equations,
and employ the fourth-order Runge–Kutta method to
carry out the integration over time.

3. RESULTS

All the computation runs whose results are pre-
sented here were conducted for Kx = Ky = Kz = 32 (the
run simulating a nonmagnetic flow, which assumes
Kx = Ky = Kz = 16, is an exception). By virtue of the
symmetry chosen for the initial perturbation, the num-
ber of harmonics representing the dependence of the

uz

∂ux

∂z
--------

∂uy

∂z
-------- 0 at z 0 1.,= = = =

hz

∂hx

∂z
--------

∂hy

∂z
-------- 0 at z 0 1.,= = = =

θ 0 at z 0 1.,= =

physical fields on any coordinate is 32; therefore, the
total number of basis functions used in the Galerkin
representation is 323 = 32768 for each variable.

In each run, a weak perturbation of the motionless
state of the fluid was specified at the initial time, in the
form of a collection of Bénard-type hexagonal cells
(Fig. 1a); viz.,

(10)

where A = –0.1, β = 2 [with the corresponding expres-
sions for ux and uy according to (4)].

We first consider the evolution of the velocity field
in the absence of a magnetic field (Q = 0, Fig. 1); qual-
itatively, this pattern of evolution also holds in a num-
ber of MHD scenarios. For the conditions chosen, the
three-dimensional convection regime is metastable.
Fairly soon, before t = 1, a steady cellular flow is estab-
lished (Fig. 1b); at that time, in the midplane z = 1/2 of
the layer, the maximum value of uz (at the center of the
cell) exceeds the minimum value (at the vertices of the
hexagon) in absolute magnitude. This regime is
observed until at least t = 9. Further, the hexagonal cells
undergo a sudden breakdown, and a transition to a two-
dimensional roll flow takes place (Figs. 1c, 1d); in this
flow, the minimum and maximum velocities over the
horizontal cross section of the cell are equal in absolute
magnitude (this complete history of the temporal vari-
ations of maxuz and minuz is also observed in most sce-
narios with a magnetic field; see Figs. 3a and 3b
below).

For the initial conditions considered, the rolls that
ultimately arise from hexagons are oriented along the x
axis and can be represented to first approximation by
the function

(11)

It is clear that, in the case at hand, the rows of central
upwellings situated in the system of hexagonal cells
along different straight lines y = const (e.g., y = 0 and
y = ±1.57 in Fig. 1b) cannot behave similarly, since
some rows change into continuous upflow zones, while
others change into downflow zones. In the direction of
the y axis, rows in which the upwellings merge (e.g.,
along the lines y = ±1.57) alternate with rows where the
upwellings are compressed (at y = 0) and then disappear,
giving way to expanding downflows (Figs. 1c, 1d). In
which specific rows (even or odd ones, when counted
along the y axis) the upwellings will merge depends on
uncontrolled noise perturbations.

Note that the flow pattern of two-dimensional rolls,
typical of convection in horizontal fluid layers weakly
nonuniform in the vertical direction, should not neces-
sarily arise in the solar convection zone, where com-
pressibility and other factors complicating the stratifi-
cation are present. Without discussing possibilities for

uz 4
A
π
--- 2 3βx βy 2βycos+coscos( ) πzcos–=

at t 0,=

uz B βy.cos=
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two-dimensional convection on the Sun, we will be
interested here only in phenomena occurring at the
stage when the flow is three-dimensional.

We now consider the evolution of the flow and mag-
netic field for R = 3000 = 4.56Rc, Q = 0.01, P1 = 1, and
P2 = 10 (Figs. 2, 3a; here, Rc = 657.5 is the critical Ray-
leigh number at which convection sets in). Crudely, by
the time t = 0.5, the cellular flow settles down to a
steady state, which persists almost until t = 9. During
the interval 0 < t < 2, the magnetic field is amplified by
the flow, and characteristically bipolar configura-
tions—pairs of compact magnetic islands—develop in
the zones of convective upwelling, near the cell centers.
At t = 2 or so, they reach a steady state, with a mag-
netic-field strength of about 41.5 (in units of H0) within
the islands. The magnetic islands remain nearly identi-

cal in all upwellings as long as the velocity field retains
its original symmetry.

After t ≈ 9.5, a rapid transition to a two-dimensional
roll flow takes place. The magnetic field weakens in
merging upwellings (in the case under consideration,
e.g., along the line x = 0) and, on the contrary, is addi-
tionally amplified for some time in those upwellings
that undergo compression (x = ±1.57); this is reflected
by the peak in the curve of maxHz in Fig. 3a near t = 9.9,
whose height is 49.1. Ultimately, the component of the
magnetic field produced by convection decays, and the
fields returns to its initial state. As is well known [12],
an externally imposed horizontal magnetic field favors
the formation of rolls oriented along this field. Such
rolls cannot amplify the magnetic field. Nevertheless,
in our case, the fairly weak initial field does not inhibit
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Fig. 1. Evolution of the flow in the absence of a magnetic field for R = 3000 = 4.56Rc and P1 = 1. Contours of the vertical velocity
component uz in the midplane z = 1/2 of the layer are shown with contour increment ∆ (here, as in Figs. 2 and 4 below, the solid
lines correspond to positive values, the dash–dot lines to zero, and dashed lines to negative values): (a) initial perturbation; (b) well-
established cellular flow; (c) transition from the cellular to a roll flow; and (d) well-established roll flow.
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the development of three-dimensional convective
flows.

Varying the Chandrasekhar number Q (actually, the
initial magnetic-field strength) with other parameters
fixed demonstrates that the main features of the sce-
nario described are typical of the range 0.001 < Q < 1
studied (the cases of Q = 0.001 and Q = 0.01 are very
similar not only qualitatively, but also quantitatively).
A comparison of scenarios computed for various Q val-
ues (Fig. 3) shows that a strong initial field (Q = 1)
results in a rapid transition to rolls, while the period of
existence of the three-dimensional flow becomes
longer as Q is decreased.

The influence of the parameters R and P2 can easily
be predicted. An increase in the Rayleigh number R to

4000 = 6.08Rc raises the steady-state value of maxHz to
49.2 and the peak value (at t ≈ 7.6) to 50.9. The effi-
ciency of magnetic-field amplification grows rapidly
with increase of the magnetic Prandtl number P2. For
P2 = 30, as can be seen from Fig. 4, the value of maxHz

at the steady-state stage proves to be much larger than
for P2 = 10, and even exceeds 170 at the upwelling-
compression stage. The islands of amplified magnetic
field at P2 = 30 are more compact than at P2 = 10.

4. DISCUSSION

Thus, our computations confirm qualitative conclu-
sions based on the model of Tverskoy [3]. In any par-
ticular case, the efficiency of the convective mechanism
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Fig. 2. Evolution of the flow and magnetic field for R = 3000 = 4.56Rc, P1 = 1, P2 = 10, and Q = 0.01. Contours of the vertical
components of the magnetic field Hz and velocity uz in the midplane z = 1/2 of the layer are shown with contour increment ∆:
(a) well-established distribution of Hz; (b) deformation of the distribution of Hz shortly after the loss of the steady state and cell sym-
metry; and (c, d) distributions of Hz and uz, respectively, at the stage of the transition from the cellular flow to a roll flow. Same
notation as in Fig. 1 is used for the contours.
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can be measured by the maximum achieved dimension-
less H and the ratio γ of the maximum values of the
magnetic- and kinetic-energy densities Em and Ek:

(12)

This ratio increases with R and P2, and also with Q—
until the flow braking by the magnetic field becomes
strong. In particular, in the scenarios presented in Fig. 3,

Em

H0
2 max Hz( )2

8π
-------------------------------, Ek

ρ0 max uz( )2

2
----------------------------ν2

d2
-----,= =

γ
Em

Ek
------

Q max Hz( )2

P2 max uz( )2
-----------------------------.= =

γ ≈ 0.003 for Q = 0.01 (Fig. 3a), γ ≈ 0.032 for Q = 0.1
(Fig. 3b), and γ ≈ 0.1 for Q = 1 (Fig. 3c); in the last case,
the braking is fairly strong, and the amplified magnetic
field rapidly disrupts the three-dimensional flow. In the
case illustrated by Fig. 4, γ ≈ 0.013, while the prelimi-
nary results obtained for R = 5000, P1 = 1, P2 = 30 yield
γ ≈ 1 for Q = 1 and γ ≈ 1.24 for Q = 3. Since a 170-fold
amplification is possible at quite moderate values of R
and P2, larger values of these parameters could
undoubtedly provide amplification by factors of many
hundreds or even thousands. Thus, the convective mag-
netic-field amplification mechanism described here
should be very efficient and is promising in the context
of searches for sources of strong photospheric magnetic
fields. In particular, our computations demonstrate the
possibility of the formation of very compact magnetic
islands. For this reason, it will be useful to investigate
the possible role of this mechanism in producing not
only sunspots and active regions, but also compact
magnetic elements.

A comparison between the computation runs with
and without a magnetic field shows that the amplified
magnetic field can leave the flow structure and velocity
in a cell virtually unaffected. This is likely a manifesta-
tion of the effect predicted earlier from the kinematic
model [13]. The Ampére force of flow braking due to
the magnetic field is determined by the product
[HcurlH] · v. The H component that grows with time is
parallel to the velocity vector v, whereas the component
normal to v is of the order of the initial field H0. There-
fore, the braking force is proportional to H0|curlH |.
Given the order of magnitude of the amplified field H,
the energy losses due to braking will be smaller the
weaker the initial field H0. One can easily imagine sit-
uations where larger final amplified field strengths will
be achieved with smaller initial field strengths—of
course, if the flow in the cell remains stable, and the
process develops in accordance with the model sce-
nario.

Moreover, the amplified field aligned with the
streamlines should stabilize the fluid flow. The lines of
the amplified field are “rails” laid by the flow, which
should counteract changes in the flow configuration. At
the same time, the magnetic-field component normal to
the velocity vector, which can destabilize the flow,
retains a magnitude of order H0. Thus, weak magnetic
fields are favorable for the operation of this mechanism
also in terms of stability. It is possible that, at suffi-
ciently small H0 and sufficiently large magnitude of the
amplified magnetic field, the latter will exert a “freez-
ing” effect on the flow.

At this stage, it would be premature to attempt to
estimate the parameter values typical of the solar con-
vection zone, where the viscosity and thermal conduc-
tivity are controlled by turbulent transport and are thus
highly indeterminate. Large Rayleigh numbers R can
be expected; however, the mere presence of a relatively
regular supergranular pattern on the Sun suggests that
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Fig. 3. Time variation of extremum values of the vertical
components of the magnetic field and velocity for R = 3000 =
4.56Rc, P1 = 1, P2 = 10, and (a) Q = 0.01, (b) Q = 0.1, and
(c) Q = 1.
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the effective R for the corresponding layers is main-
tained by small-scale turbulent processes on a level at
which convection remains quasi-laminar. The electrical
conductivity of the solar plasma in the convection zone
grows rapidly with depth, reaching values for which the
magnetic field can be considered to be completely fro-
zen in the plasma. Turbulence should reduce the effec-
tive conductivity. However, as can be judged by the
observed picture, the magnetic-field dynamics do not
depart too strongly from a freezing-in regime, even in
layers that can be directly observed; therefore, the mag-
netic Prandtl number P2 still remains fairly high. Effec-
tive hydrodynamic Prandtl numbers of order unity are
usually considered plausible.

The pattern of the evolution of photospheric mag-
netic fields controlled by the convective mechanism is
free of the contradictions with observations inherent in
the rising-tube model (see Introduction).

For the convective mechanism to come into action,
it is necessary that an especially large and intense
supergranular cell encompassing layers deeper than
usual be threaded with a weak seed magnetic field.
Such a field is unlikely to be highly ordered, but the
spatially averaged vector of this field could naturally be
identified with the large-scale toroidal (latitudinally
directed) magnetic field; the presence of such a pre-
ferred direction of the magnetic field at the initial time
is, in principle, sufficient for the field to subsequently
evolve in qualitative agreement with the computed sce-
narios. Therefore, the seed field should be controlled by
large-scale dynamo processes, and should introduce a
global regularity into the distribution of sunspot
groups. Nothing but convection on supergranular and
sunspot scales will serve as a connecting link between
the global and local processes.

Diverse initial conditions can ensure the generation of
diverse configurations of the amplified magnetic field. In
particular, if the initial magnetic field is directed vertically,
a unipolar-type configuration will form, whereas oblique
initial fields will produce a variety of superpositions of
unipolar, bipolar, and higher multipolar fields. If the
seed field threads a group of cells, the interaction of the
flows with the magnetic field will be “collective,” and the
amplified field will have a more complex structure; in this
case, natural prerequisites arise for the manifestation of
the sunspot-area quantization pointed out in [2].

Let us summarize the main conclusions of this
study.

(1) The convective mechanism considered here,
which does not require strong initial magnetic fields, is
highly efficient, i.e., it can form bipolar configurations
of a multiply amplified magnetic field.

(2) This mechanism provides a natural explanation
for the general, global regularities in the behavior of
local solar magnetic fields and for the quantization of
sunspot areas.

(3) The basic features of the magnetic-field amplifi-
cation process are in agreement with the observed pat-
tern for the evolution of flows and magnetic fields in the
regions where sunspot groups develop.
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components of the magnetic field Hz and velocity uz in the midplane z = 1/2 of the layer are shown with contour increment ∆:
(a) deformation of the distribution of Hz shortly after the loss of the steady state and cell symmetry; (b, c) distributions of Hz and uz,
respectively, at the stage of the transition from the cellular flow to a roll flow. Same notation as in Fig. 1 is used for contours.
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